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While the chemistry of anionic boron clusters such as closo-
B,H,> (6 < n < 12) is well-established, the last two decades have
witnessed a rapid development of the corresponding chemistry of
the heavier group 13 elements.' ™ Although the preparation of
Kz[Allzi-Bulz]s and [Ga(){Si(CMe3)3}4(CH2C(,H5)2]2’ 6 are notable
advances, the experimental realization of neutral aromatic as-
semblies of heavier group 13 elements continues to present a
challenge.l Indeed, the neutral aromatic GagR4 octahedron has yet
to be prepared. However, GagR4 [R = Si(#-Buj)] is postulated to
be a reactive intermediate in the formation of GagRs.’ The
complexation of gallium halide clusters by Lewis bases, exemplified
by triethylphosphine in Gaglg(PEt3)s,” is an interesting approach.
Can N-heterocyclic carbenes, serving as Lewis bases, stabilize group
13 metallic clusters? Utilizing this strategy, we recently stabilized
a group of highly reactive diatomic molecules, including neutral
diborenes [L:(H)B=B(H):L],>'° disilicon (L:Si=Si:L),"* and diphos-
phorus (L:P—P:L)."> We now report the syntheses,'®> molecular
structures,'® and computations'* of three new carbene-stabilized
organogallium compounds: L:Ga(Mes)Cl, (1), L:(Mes)(Cl)Ga—
Ga(Cl)(Mes):L (2), and L:Ga[GasMes4]Ga:L (3), where L: = :C{(i-
Pr)NC(Me)}, and Mes = 2,4,6-Me;C¢H,. Notably, compound 3 is
the first example of a neutral aromatic Gas octahedron.

The carbene-complexed mesitylgallium dichloride 1 was quan-
titatively prepared by the reaction of MesGaCl, with L:."* Remark-
ably, potassium graphite reduction of 1 in hexane (1/KCs = 1:3)
formed air- and moisture-sensitive pale-yellow crystals of 2 (eq
1), while potassium reduction of 1 in toluene (1/K = 1:2) resulted
in ruby-red crystals of 3 (eq 2):
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The four-coordinate gallium atoms in 2 reside in distorted
tetrahedral geometries (Figure 1). The formal gallium oxidation
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Figure 1. Molecular structures of 1 and 2, with thermal ellipsoids shown
at the 30% probability level and hydrogen atoms omitted for clarity. Selected
bond distances (A): For 1: Ga(1)—C(1), 1.978(2); Ga(1)—C(10), 2.048(2);
Ga(1)—ClI(1), 2.2468(6); Ga(1)—Cl(2), 2.2444(6). For 2: Ga(1)—Ga(2),
2.4474(11); Ga(1)—C(1), 2.101(7); Ga(1)—C(12), 2.028(7); Ga(1)—CI(1),
2.300(2).

numbers in compounds 1 and 2 are +3 and +2, respectively. The
Ga—Ga bond length in 2, 2.447 A, is comparable to those in
gallium(II) iodide amine and phosphane complexes (2.425—2.459
A)."> The Ga—C;.. distance in 2 (2.101 A) approaches the Ga—Cyyes
bond distance (2.028 A). The Ga—Cl and Ga—C bonds in 2 are
only marginally longer than those in 1.

The octahedral Gag core is the most striking structural feature
of 3, a carbene-stabilized neutral gallium octahedron (Figure 2).
Each gallium atom in 3 is five-coordinate; four Mes—Ga groups
occupy the equatorial sites, while two L:Ga moieties populate the
axial positions. Thus, one can consider the formal oxidation states
of the gallium atoms in the Mes—Ga and L:Ga units to be +1 and
zero, respectively. Indeed, 3 resembles the isoelectronic
[Gae{Si(CMe3); }4(CH,CeHs),]*~ dianion:® both have 14 skeletal
electrons, consistent with the Wade—Mingos rules.' Although
GaCp*s (Cp* = MesCs)'® is also a neutral Gag octahedron, it has
extremely long Ga—Ga distances (> 4.0 A). Neutral GagRg [R =
SiMe(SiMejs),],° has only 12 skeletal electrons and a Jahn—Teller-
distorted precloso-octahedral Gag core. Dianionic GagRg>™ [R =
Si(C¢Hs),Me]'” exhibits a planar Gag frame that is also present in
p-Ga.
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Figure 2. Molecular structure of 3, with thermal ellipsoids shown at the
30% probability level and hydrogen atoms omitted for clarity. Selected bond
distances (A) and angles (deg): Ga(1)—Ga(2), 2.5905(11); Ga(1)—Ga(3),
2.5109(12); Ga(2)—Ga(3), 2.5165(12); Ga(2)—Ga(3)—Ga(2A), 93.68(5);
Ga(1A)—Ga(3)—Ga(l), 93.44(5); Ga(lA)—Ga(2)—Ga(l), 89.76(5);
Ga(3)—Ga(2)—Ga(3A), 86.32(5); Ga(2A)—Ga(1)—Ga(2), 90.24(5); Ga(3)—
Ga(1)—Ga(3A), 86.56(5).
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Figure 3. Structure of the 3a model optimized at the B3LYP/6-3114+G**
level.

The fact that the diagonal Ga(3)+++Ga(3a) distance (3.443 A)is
noticeably shorter than the Ga(l):--Ga(la) (3.656 A) and
Ga(2)--+Ga(2a) (3.671 A) separations in 3 suggests a tetragonal
compression of the Gag octahedron. A more pronounced tetragonal
compression was observed in the Tl® octahedral polyanion in
CsTL.'® The distortion of the Gag octahedron in 3 is also illustrated
by the longer Ga(l1)—Ga(2) bond distance of 2.590 A in the
(MesGa), square plane compared with the Ga(l)—Ga(3) and
Ga(2)—Ga(3) bond lengths (2.511 and 2.516 A, respectively). Three
twofold axes, through the Ga(1)+++Ga(1A), Ga(2)+--Ga(2A), and
Ga(3)+-+Ga(3A) diagonals, constitute the D, symmetry of 3.

Density functional theory (DFT) computations on a simplified
model of 3, L":Ga[Ga,Phs]Ga:L’ [L": = :C{NH)C(H)},] (3a)
(Figure 3) at the B3LYP/6-311+G** level are in reasonable
agreement with the experimental values.'* Natural bond orbital
(NBO)'? analysis of 3a shows that the natural atomic orbital indices
(NAO) and Wiberg bond indices (WBI) of the Ga; —Gap;, bonds
(NAO = 0.729, 0.747; WBI = 0.606, 0.647) are larger than those
of the Gap,—Gap, bonds (NAO = 0.679; WBI = 0.548). The
skeletal bond orders in 3a, however, are similar to those for the

BsHs>~ (NAO = 0.766, WBI = 0.683) and GagHs>~ (NAO = 0.683,
WBI = 0.646) dianions.

The nucleus-independent chemical shift (NICS)?° values com-
puted at the cluster centers at the PW91PW91/6-311+G** level
indicated that 3a (NICS = —10.2), although aromatic, was less so
than its parent octahedral dianion congeners [GagHg]*>~ (NICS =
—27.3), [AlgHg]>~ (NICS = —25.1), and [B¢Hg¢]>~ (NICS =
—27.57").

The strong complexing capabilities?® and “superbasicity
description of N-heterocyclic carbenes are quantified by our B3ALYP/
6-311+G**+ZPE-computed binding energies for the reactions of
the model parent imidazole-based L': with GaCl; to give L":GaCl;
(47.0 kcal/mol), with C¢HsGaCl, to give L':GaC¢HsCl, (1a) (37.9
kcal/mol), and with (C¢Hs)(Cl)Ga—Ga(Cl)(C¢Hs) to give L':
(C¢Hs)(C1H)Ga—Ga(Cl)(C¢Hs):L' (2a) (67.2 kcal/mol). The utilization
of carbenes in the stabilization of a neutral aromatic Gag octahedron
further illustrates the fascinating versatility of these ligands.
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